364 research outputs found

    A space-fractional Monodomain model for cardiac electrophysiology combining anisotropy and heterogeneity on realistic geometries

    Get PDF
    Classical models of electrophysiology do not typically account for the effects of high structural heterogeneity in the spatio-temporal description of excitation waves propagation. We consider a modification of the Monodomain model obtained by replacing the diffusive term of the classical formulation with a fractional power of the operator, defined in the spectral sense. The resulting nonlocal model describes different levels of tissue heterogeneity as the fractional exponent is varied. The numerical method for the solution of the fractional Monodomain relies on an integral representation of the nonlocal operator combined with a finite element discretisation in space, allowing to handle in a natural way bounded domains in more than one spatial dimension. Numerical tests in two spatial dimensions illustrate the features of the model. Activation times, action potential duration and its dispersion throughout the domain are studied as a function of the fractional parameter: the expected peculiar behaviour driven by tissue heterogeneities is recovered

    Spatially Extended SHAR Epidemiological Framework of Infectious Disease Transmission

    Get PDF
    Mathematical models play an important role in epidemiology. The inclusion of a spatial component in epidemiological models is especially important to understand and address many relevant ecological and public health questions, e.g., when wanting to differentiate transmission patterns across geographical regions or when considering spatially heterogeneous intervention measures. However, the introduction of spatial effects can have significant consequences on the observed model dynamics and hence must be carefully analyzed and interpreted. Cellular automata epidemiological models typically rely on simplified computational grids but can provide valuable insight into the spatial dynamics of transmission within a population by suitably accounting for the connections between individuals in the considered community. In this paper, we describe a stochastic cellular automata disease model based on an extension of the traditional Susceptible-Infected-Recovered (SIR) compartmentalization of the population, namely, the Susceptible-Hospitalized-Asymptomatic-Recovered (SHAR) formulation, in which infected individuals either present a severe form of the disease, thus requiring hospitalization, or belong to the so-called mild/asymptomatic class. The critical transmission threshold is derived analytically in the nonspatial SHAR formulation, and this generalizes previously obtained theoretical results for the SIR model. We present simulation results discussing the effect of key model parameters and of spatial correlations on model outputs and propose an algorithm for tracking the evolution of infection clusters within the considered population. Focusing on the role of import and criticality on the overall dynamics, we conclude that the current spatial setting increases the critical transmission threshold in comparison to the nonspatial model

    A space-fractional bidomain framework for cardiac electrophysiology: 1D alternans dynamics

    Get PDF
    Cardiac electrophysiology modeling deals with a complex network of excitable cells forming an intricate syncytium: the heart. The electrical activity of the heart shows recurrent spatial patterns of activation, known as cardiac alternans, featuring multiscale emerging behavior. On these grounds, we propose a novel mathematical formulation for cardiac electrophysiology modeling and simulation incorporating spatially non-local couplings within a physiological reaction–diffusion scenario. In particular, we formulate, a space-fractional electrophysiological framework, extending and generalizing similar works conducted for the monodomain model. We characterize one-dimensional excitation patterns by performing an extended numerical analysis encompassing a broad spectrum of space-fractional derivative powers and various intra- and extracellular conductivity combinations. Our numerical study demonstrates that (i) symmetric properties occur in the conductivity parameters’ space following the proposed theoretical framework, (ii) the degree of non-local coupling affects the onset and evolution of discordant alternans dynamics, and (iii) the theoretical framework fully recovers classical formulations and is amenable for parametric tuning relying on experimental conduction velocity and action potential morphology.ELKARTEK KK-2020/0000

    Understanding COVID-19 Epidemics: A Multi-Scale Modeling Approach

    Get PDF
    COVID-19 was declared a pandemic by the World Health Organization in March 2020 and, since then, research on mathematical modeling became imperative and very influential to understand the epidemiological dynamics of disease spreading and control under different scenarios. In this chapter, two different approaches to model the spread of COVID-19 are presented. The model frameworks are described and results are presented in connection with the current epidemiological situation of vaccination roll-out. This chapter is structured as follows. Section 2 presents the stochastic SHARUCD modeling framework developed within a modeling task force created to support public health managers during the COVID-19 crisis. As an extension of the basic SHAR (Susceptible-Hospitalized-Asymptomatic-Recovered) model, the SHARUCD models were parameterized and validated with empirical data for the Basque Country, Spain, and have been used (up until now) to monitor COVID-19 spreading and control over the course of the pandemic. Section 3 introduces the kinetic theory of active particles (KTAP) model for the spread of a disease. With an exploratory analysis, we present a possible way to deal with heterogeneity and multiscale features. Section 4 concludes this work, with a discussion on both models and further research perspectives description

    Modeling cardiac structural heterogeneity via space-fractional differential equations

    Get PDF
    We discuss here the use of non-local models in space and fractional order operators in the characterisation of structural complexity and the modeling of propagation in heterogeneous biological tissues. In the specific, we consider the application of space-fractional operators in the context of cardiac electrophysiology, where the lack of clear separation of scales of the highly heterogeneous myocardium triggers peculiar features such as the dispersion of action potential duration, that have been observed experimentally, but cannot be described by the standard monodomain or bidomain models. We describe the methodology and compare the results of a standard monodomain model with results of a model with a non-local component in space

    Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions

    Get PDF
    In this work, we propose novel discretisations of the spectral fractional Laplacian on bounded domains based on the integral formulation of the operator via the heat-semigroup formalism. Specifically, we combine suitable quadrature formulas of the integral with a finite element method for the approximation of the solution of the corresponding heat equation. We derive two families of discretisations with order of convergence depending on the regularity of the domain and the function on which the fractional Laplacian is acting. Unlike other existing approaches in literature, our method does not require the computation of the eigenpairs of the Laplacian on the considered domain, can be implemented on possibly irregular bounded domains, and can naturally handle different types of boundary constraints. Various numerical simulations are provided to illustrate performance of the proposed method and support our theoretical results.FdT acknowledges support of Toppforsk project Waves and Nonlinear Phenomena (WaNP), grant no. 250070 from the Research Council of Norway. ERCIM ``Alain Benoussan" Fellowship programm

    A Novel Mathematical Approach for Analysis of Integrated Cell–Patient Data Uncovers a 6-Gene Signature Linked to Endocrine Therapy Resistance

    Get PDF
    A significant number of breast cancers develop resistance to hormone therapy. This progression, while posing a major clinical challenge, is difficult to predict. Despite important contributions made by cell models and clinical studies to tackle this problem, both present limitations when taken individually. Experiments with cell models are highly reproducible but do not reflect the indubitable heterogeneous landscape of breast cancer. On the other hand, clinical studies account for this complexity but introduce uncontrolled noise due to external factors. Here, we propose a new approach for biomarker discovery that is based on a combined analysis of sequencing data from controlled MCF7 cell experiments and heterogeneous clinical samples that include clinical and sequencing information from The Cancer Genome Atlas. Using data from differential gene expression analysis and a Bayesian logistic regression model coupled with an original simulated annealing-type algorithm, we discovered a novel 6-gene signature for stratifying patient response to hormone therapy. The experimental observations and computational analysis built on independent cohorts indicated the superior predictive performance of this gene set over previously known signatures of similar scope. Together, these findings revealed a new gene signature to identify patients with breast cancer with an increased risk of developing resistance to endocrine therapy

    Key aspects for effective mathematical modelling of fractional-diffusion in cardiac electrophysiology: A quantitative study

    Get PDF
    Microscopic structural features of cardiac tissue play a fundamental role in determining complex spatio-temporal excitation dynamics at the macroscopic level. Recent efforts have been devoted to the development of mathematical models accounting for non-local spatio-temporal coupling able to capture these complex dynamics without the need of resolving tissue heterogeneities down to the micro-scale. In this work, we analyse in detail several important aspects affecting the overall predictive power of these modelling tools and provide some guidelines for an effective use of space-fractional models of cardiac electrophysiology in practical applications. Through an extensive computational study in simplified computational domains, we highlight the robustness of models belonging to different categories, i.e., physiological and phenomenological descriptions, against the introduction of non-locality, and lay down the foundations for future research and model validation against experimental data. A modern genetic algorithm framework is used to investigate proper parameterisations of the considered models, and the crucial role played by the boundary assumptions in the considered settings is discussed. Several numerical results are provided to support our claims.Italian National Group of Mathematical Physics (GNFM-INdAM); NSF grant No. 1762553; NIH grant No. 1R01HL143450-0

    Unlocking datasets by calibrating populations of models to data density: a study in atrial electrophysiology

    Get PDF
    The understanding of complex physical or biological systems nearly always requires a characterization of the variability that underpins these processes. In addition, the data used to calibrate these models may also often exhibit considerable variability. A recent approach to deal with these issues has been to calibrate populations of models (POMs), multiple copies of a singlemathematicalmodel butwith different parameter values, in response to experimental data. To date, this calibration has been largely limited to selectingmodels that produce outputs that fallwithin the ranges of the data set, ignoring any trends that might be present in the data. We present here a novel and general methodology for calibrating POMs to the distributions of a set of measured values in a data set.We demonstrate our technique using a data set from a cardiac electrophysiology study based on the differences in atrial action potential readings between patients exhibiting sinus rhythm (SR) or chronic atrial fibrillation (cAF) and the Courtemanche-Ramirez-Nattel model for human atrial action potentials. Not only does our approach accurately capture the variability inherent in the experimental population, but we also demonstrate how the POMs that it produces may be used to extract additional information from the data used for calibration, including improved identification of the differences underlying stratified data.We also show how our approach allows different hypotheses regarding the variability in complex systems to be quantitatively compared

    Critical fluctuations in epidemic models explain COVID‑19 post‑lockdown dynamics

    Get PDF
    As the COVID-19 pandemic progressed, research on mathematical modeling became imperative and very influential to understand the epidemiological dynamics of disease spreading. The momentary reproduction ratio r(t) of an epidemic is used as a public health guiding tool to evaluate the course of the epidemic, with the evolution of r(t) being the reasoning behind tightening and relaxing control measures over time. Here we investigate critical fluctuations around the epidemiological threshold, resembling new waves, even when the community disease transmission rate β is not signifcantly changing. Without loss of generality, we use simple models that can be treated analytically and results are applied to more complex models describing COVID-19 epidemics. Our analysis shows that, rather than the supercritical regime (infectivity larger than a critical value, β>βc) leading to new exponential growth of infection, the subcritical regime (infectivity smaller than a critical value, β<βc) with small import is able to explain the dynamic behaviour of COVID-19 spreading after a lockdown lifting, with r(t) ≈ 1 hovering around its threshold value.BMTF “Mathematical Modeling Applied to Health” Project European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 79249
    • …
    corecore